Aminopyrine demethylation kinetics: comparison of plasma and exhaled metabolites

J.B. HOUSTON & G.F. LOCKWOOD (introduced by M. ROWLAND)

Department of Pharmacy, University of Manchester, M13 9PL

Aminopyrine (AP) is metabolised by two successive N-demethylations to give monomethylaminoantipyrine (MAP) and aminoantipyrine (Brodie & Axelrod, 1950). Following demethylation the single carbon moiety enters the formaldehyde-formate pool and is exhaled as CO₂. Hence N-¹⁴CH₃ groups yield ¹⁴CO₂ which provides a convenient non-invasive method of monitoring the metabolism of aminopyrine in man (Hepner & Vesell, 1974) and animals (Lauterburg & Bircher, 1976).

We have developed a technique for continuous determination of $^{14}\text{CO}_2$ exhalation in the rat (Sprague Dawley) following [^{14}C]-AP administration (30 mg/kg; i.p.). As shown in Figure 1, the $^{14}\text{CO}_2$ formation rate-time plots peak rapidly and decline in a biphasic fashion. The latter phenomenon has apparently not been observed by previous investigators. By means of curve stripping, half-life (T_{\pm}) values (min) are assigned to the initial ($\alpha = 40 \pm 14$, n = 8) and terminal ($\beta = 116 \pm 28$, n = 8) phases. The insert shows the plasma concentration-time plots for AP ($T_{\pm} = 48 \pm 12$, n = 6) and MAP ($T_{\pm} = 122 \pm 32$, n = 6).

Pretreatment with either an enzyme inducer (phenobarbitone, 100 mg/kg for 4 days, n=4) or inhibitor (SKF 525A, 50 mg/kg 1 h prior to AP administration, n=4) has dramatic effects on both the $^{14}\text{CO}_2$ and plasma data. There is a statistically significant (P<0.05) decrease in the $T_{\frac{1}{2}}$ values for α (29 \pm 10), β (64 \pm 30), AP (27 \pm 4) and MAP (47 \pm 6) after phenobarbitone pretreatment. In the inhibition studies only one phase is apparent in the $^{14}\text{CO}_2$ formation rate-time plot ($T_{\frac{1}{2}}=591\pm222$). The plasma AP $T_{\frac{1}{2}}$ shows a statistically significant (P<0.01) increase to 298 \pm 17. No MAP $T_{\frac{1}{2}}$ could be calculated since plasma concentrations did not peak within four hours.

These results suggest that AP is demethylated at a faster rate than MAP and illustrate the need to consider both sources of ¹⁴CO₂ in aminopyrine breath analysis studies.

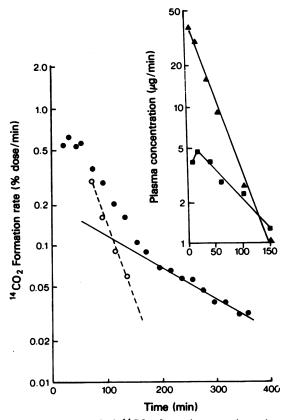


Figure 1 A typical $^{14}\text{CO}_2$ formation rate-time plot following administration of ^{14}C -aminopyrine; observed data points (\bullet) and stripped α phase data points (\bigcirc). The insert shows a typical plasma concentration-time plot for aminopyrine (\triangle) and monomethyl-aminoantipyrine (\square) following aminopyrine administration.

References

Brodie, B.B. & Axelrod, J. (1950). The fate of aminopyrine (pyramidon) in man and methods for the estimation of aminopyrine and its metabolites in biological materials. J. Pharmac. exp. Ther., 99, 171-184.

HEPNER, G.W. & VESELL, E.S. (1974). Assessment of aminopyrine metabolism in man by breath analysis after oral administration of ¹⁴C-aminopyrine. N. Engl. J. Med., 291, 1384–1388.

LAUTERBURG, B.H. & BIRCHER, J. (1976). Expiratory measurement of maximal aminopyrine demethylation in vivo: Effects of phenobarbital, partial hepatectomy, portacaval shunt and bile duct ligation in the rat. J. Pharmac. exp. Ther., 196, 501-509.